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Letters
Chelation-controlled highly diastereoselective catalytic
hydrogenation of c-hydroxy-a-methylenecarboxylic acid esters
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Abstract—We report the catalytic hydrogenation of c-hydroxy-a-methylenecarboxylic acid esters over Pd/C in the presence of
4 equiv of MgBr2 in tetrahydrofuran yielding predominantly the corresponding syn-c-hydroxy-a-methylcarboxylic acid esters.
� 2004 Elsevier Ltd. All rights reserved.
The use of chelation with Lewis acids is one of the most
efficient and practical means to control stereochemistry
in acyclic reactions.1 Recently, the concept has been
applied to the stereoselective acyclic radical reactions.2

We have reported the chelation-controlled 1,3-asym-
metric induction in the radical-mediated additions
to c-benzyloxy-a-methylenecarboxylic acid esters 1
(R3¼alkyl; Scheme 1).3 Furthermore, we applied the
chelation control to the diastereoselective conjugate
reduction of 1 (R3¼Ph) with tributyltin hydride.4 To
expand the scope and utility of the stereocontrol based
on the seven-membered chelate ring formation, we have
examined the heterogeneous catalytic hydrogenation of
c-hydroxy-a-methylenecarboxylic acid esters in the
presence of Lewis acids. Very recently, Bouzide has
reported the chelation-controlled stereoselective cata-
lytic hydrogenation of a-methylene-b-oxycarboxylic
acid esters (Baylis–Hillman adducts),5 but to our
knowledge, little is known about chelation-controlled
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heterogeneous catalytic hydrogenation reactions despite
their importance in organic synthesis.

Initially, we carried out the hydrogenation of c-hydroxy
esters 4a over Pd/C (10%) under an atmospheric pres-
sure of hydrogen in various solvents (Scheme 2 and
Table 1).6 The hydrogenation of 4a over Pd/C in THF
showed no diastereoselectivity (entry 1).7 However, the
reaction performed in the presence of 3 equiv of MgBr2
gave 5a with high syn-selectivity (entry 2). In the radical
reactions of 1 (Scheme 1), 3 equiv of MgBr2 was suffi-
cient to attain the highest diastereoselectivity,3 but in the
hydrogenation, the addition of 4 equiv of MgBr2 further
improved the diastereoselectivity to syn:anti¼29:1 (entry
3). The use of dichloromethane as solvent showed lower
syn-selectivity (entry 4),8 although the solvent was very
effective in the chelation-controlled radical reactions of
1.3 The addition of THF to dichloromethane increased
the syn-stereoselectivity (entries 5 and 6). Surprisingly,
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Table 1. Diastereoselectivity in the catalytic hydrogenation of 4a–e over Pd/C

Entry Substrate MgBr2 (equiv) Solvent Product Yield (%) syn:anti

1 4a –– THF 5a 78 1:1

2 3 THF 72 16:1

3 4 THF 79 29:1

4 3 CH2Cl2 77 5.5:1

5 4 CH2Cl2
a 73 7.1:1

6 4 THF–CH2Cl2
b 69 12:1

7 3 1,4-Dioxane 92 1:1

8 4 CH2Cl2
c 74 1.6:1

9 3 Et2O 78 7.2:1

10 4 CH3CN 82 8.8:1

11 3 AcOEt 59 3.5:1

12 3 MeOH 65 1.7:1

13 4b 4 THF 5b 90 21:1

14 4c 4 THF 5c 86 10:1

15 4d 3 THF 5d 86 >50:1

16 4e 4 THF 5e 85 3.9:1

aAdditive: 4 equiv of THF.
bRatio 1:10 v/v.
c Additive: 4 equiv of 1,4-dioxane.
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Scheme 2. Chelation-controlled catalytic hydrogenation of 4.
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the diastereoselectivity was completely lost in 1,4-di-
oxane (entry 7) and even in dichloromethane containing
4 equiv of 1,4-dioxane (entry 8). Diethyl ether and aceto-
nitrile were less effective compared to THF (entries 9
and 10). Entries 11 and 12 show that ethyl acetate and
methanol were not suitable for the stereocontrol.

The selectivity did not increase on lowering the tem-
perature to 0 �C. Neither Mg(ClO4)2 nor ZnCl2 was
effective. The hydrogenation of 4a over platinum(IV)
oxide in dichloromethane showed no diastereoselectivity
even in the presence of MgBr2.

Under the optimized reaction conditions (entry 3), we
subsequently carried out the hydrogenation using vari-
ous c-hydroxy-a-methylenecarboxylic acid esters 4b–e.
c-Cyclohexyl-substituted 4b showed high syn-selectivity
(entry 13), but the selectivity in the hydrogenation of 4c
was lower (entry 14). Substrate 4d3d bearing a bulky tert-
butyl group showed excellent syn-selectivity
(syn:anti¼>50:1; entry 15). These results suggest that
the syn-selectivity increased with increasing the bulk of
c-substituent. c-Phenyl-substituted substrate 4e,3d how-
ever, gave 5e with low syn-selectivity (entry 16).

The reaction of 4 affording syn-5 and the catalytic
hydrogenation of c-substituted-a-methylene-c-lactones
affording the corresponding syn-a-methyl-c-lactones9

are complementary to each other with respect to dia-
stereoselectivity.

The catalytic hydrogenation of MOM ether derivatives
6 and methyl ether 7 over Pd/C in the presence of MgBr2
in THF or dichloromethane showed poor diastereo-
selectivity. This suggests that the hydrogen bonding
between the c-hydroxy group and a THF molecule may
play an important role for the stereocontrol in the
hydrogenation of hydroxy esters 4 in THF. However,
the solvation of the magnesium center cannot be
neglected to account for the differing selectivities
observed with different solvents. Further investigation
on the origin of the diastereoselectivity is now in pro-
gress.
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In summary, we reported the catalytic hydrogenation of
c-hydroxy-a-methylenecarboxylic acid esters 4 over Pd/
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C in the presence of 4 equiv of MgBr2 in tetrahydrofuran
yielding predominantly the corresponding syn-c-hydroxy-
a-methylcarboxylic acid esters 5.
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